
Free Questions for CKA by actualtestdumps

Shared by Delaney on 05-09-2022

For More Free Questions and Preparation Resources

Check the Links on Last Page



Question 1
Question Type: MultipleChoice

SIMULATION

Check to see how many worker nodes are ready (not including nodes tainted NoSchedule) and write the number to

/opt/KUCC00104/kucc00104.txt.

solution

Image not found or type unknown

Options: 
B) solution







Answer: 
B

Question 2
Question Type: MultipleChoice

SIMULATION

Scale the deployment webserver to 6 pods.

Options: 
A) solution



B) solution



Answer: 
A

Question 3



Question Type: MultipleChoice

SIMULATION

Configure the kubelet systemd- managed service, on the node labelled with name=wk8s-node-1, to launch a pod containing a single

container of Image httpd named webtool automatically. Any spec files required should be placed in the /etc/kubernetes/manifests

directory on the node.

You can ssh to the appropriate node using:

[student@node-1] $ ssh wk8s-node-1

You can assume elevated privileges on the node with the following command:

[student@wk8s-node-1] $ | sudo --i

Options: 
A) solution











B) solution











Answer: 
A

Question 4



Question Type: MultipleChoice

SIMULATION

Given a partially-functioning Kubernetes cluster, identify symptoms of failure on the cluster.

Determine the node, the failing service, and take actions to bring up the failed service and restore the health of the cluster. Ensure that

any changes are made permanently.

You can ssh to the relevant I nodes (bk8s-master-0 or bk8s-node-0) using:

[student@node-1] $ ssh <nodename>

You can assume elevated privileges on any node in the cluster with the following command:

[student@nodename] $ | sudo --i

Options: 
A) solution









B) solution









Answer: 
B

Question 5
Question Type: MultipleChoice

SIMULATION

For this item, you will have to ssh to the nodes ik8s-master-0 and ik8s-node-0 and complete all tasks on these nodes. Ensure that you

return to the base node (hostname: node-1) when you have completed this item.

Context

As an administrator of a small development team, you have been asked to set up a Kubernetes cluster to test the viability of a new

application.

Task

You must use kubeadm to perform this task. Any kubeadm invocations will require the use of the --ignore-preflight-errors=all option.

* Configure the node ik8s-master-O as a master node. .

* Join the node ik8s-node-o to the cluster.



Options: 
A) solution

You must use the kubeadm configuration file located at /etc/kubeadm.conf when initializing

your cluster.

You may use any CNI plugin to complete this task, but if you don't have your favourite CNI plugin's manifest URL at hand, Calico is one

popular option: https://docs.projectcalico.org/v3.14/manifests/calico.yaml

Docker is already installed on both nodes and apt has been configured so that you can install the required tools.

B) solution

You must use the kubeadm configuration file located at /etc/kubeadm.conf when initializing

your cluster.

You may use any CNI plugin to complete this task, but if you don't have your favourite CNI plugin's manifest URL at hand, Calico is one

popular option:

Answer: 
A

Question 6
Question Type: MultipleChoice



SIMULATION

Create a persistent volume with name app-data, of capacity 2Gi and access mode ReadWriteMany. The type of volume is hostPath and

its location is /srv/app-data.

Options: 
A) Persistent Volume

A persistent volume is a piece of storage in a Kubernetes cluster. PersistentVolumes are a cluster-level resource like nodes, which don't

belong to any namespace. It is provisioned by the administrator and has a particular file size. This way, a developer deploying their app

on Kubernetes need not know the underlying infrastructure. When the developer needs a certain amount of persistent storage for their

application, the system administrator configures the cluster so that they consume the PersistentVolume provisioned in an easy way.

Creating Persistent Volume

kind: PersistentVolume

apiVersion: v1

metadata:

name:app-data

spec:

capacity: # defines the capacity of PV we are creating

storage: 2Gi #the amount of storage we are tying to claim

accessModes: # defines the rights of the volume we are creating

- ReadWriteMany

hostPath:

path: '/srv/app-data' # path to which we are creating the volume



Challenge

Create a Persistent Volume named app-data, with access mode ReadWriteMany, storage classname shared, 2Gi of storage capacity

and the host path /srv/app-data.





2. Save the file and create the persistent volume.

3. View the persistent volume.

* Our persistent volume status is available meaning it is available and it has not been mounted yet. This status will change when we

mount the persistentVolume to a persistentVolumeClaim.

PersistentVolumeClaim

In a real ecosystem, a system admin will create the PersistentVolume then a developer will create a PersistentVolumeClaim which will

be referenced in a pod. A PersistentVolumeClaim is created by specifying the minimum size and the access mode they require from the

persistentVolume.

Challenge

* Create a Persistent Volume Claim that requests the Persistent Volume we had created above. The claim should request 2Gi. Ensure

that the Persistent Volume Claim has the same storageClassName as the persistentVolume you had previously created.kind:

PersistentVolume

apiVersion: v1

metadata:

name:app-data

spec:

accessModes:

- ReadWriteMany



resources:

requests:

storage: 2Gi

storageClassName: shared

2. Save and create the pvc

njerry191@cloudshell:~ (extreme-clone-2654111)$ kubect1 create -f app-data.yaml

persistentvolumeclaim/app-data created

3. View the pvc

4. Let's see what has changed in the pv we had initially created.

Our status has now changed from available to bound.

5. Create a new pod named myapp with image nginx that will be used to Mount the Persistent Volume Claim with the path

/var/app/config.

Mounting a Claim

apiVersion: v1

kind: Pod

metadata:



creationTimestamp: null

name: app-data

spec:

volumes:

- name:congigpvc

persistenVolumeClaim:

claimName: app-data

containers:

- image: nginx

name: app

volumeMounts:

- mountPath: '/srv/app-data '

name: configpvc

B) Persistent Volume

A persistent volume is a piece of storage in a Kubernetes cluster. PersistentVolumes are a cluster-level resource like nodes, which don't

belong to any namespace. It is provisioned by the administrator and has a particular file size. This way, a developer deploying their app

on Kubernetes need not know the underlying infrastructure. When the developer needs a certain amount of persistent storage for their

application, the system administrator configures the cluster so that they consume the PersistentVolume provisioned in an easy way.

Creating Persistent Volume

kind: PersistentVolume

apiVersion: v1

metadata:

name:app-data

spec:

capacity: # defines the capacity of PV we are creating



storage: 2Gi #the amount of storage we are tying to claim

accessModes: # defines the rights of the volume we are creating

- ReadWriteMany

hostPath:

path: '/srv/app-data' # path to which we are creating the volume

Challenge

Create a Persistent Volume named app-data, with access mode ReadWriteMany, storage classname shared, 2Gi of storage capacity

and the host path /srv/app-data.





2. Save the file and create the persistent volume.

3. View the persistent volume.

* Our persistent volume status is available meaning it is available and it has not been mounted yet. This status will change when we

mount the persistentVolume to a persistentVolumeClaim.

PersistentVolumeClaim

In a real ecosystem, a system admin will create the PersistentVolume then a developer will create a PersistentVolumeClaim which will

be referenced in a pod. A PersistentVolumeClaim is created by specifying the minimum size and the access mode they require from the

persistentVolume.

Challenge

* Create a Persistent Volume Claim that requests the Persistent Volume we had created above. The claim should request 2Gi. Ensure

that the Persistent Volume Claim has the same storageClassName as the persistentVolume you had previously created.kind:

PersistentVolume

apiVersion: v1

metadata:

name:app-data

spec:

accessModes:

- ReadWriteMany



resources:

requests:

storage: 2Gi

storageClassName: shared

2. Save and create the pvc

njerry191@cloudshell:~ (extreme-clone-2654111)$ kubect1 create -f app-data.yaml

persistentvolumeclaim/app-data created

3. View the pvc

4. Let's see what has changed in the pv we had initially created.

Our status has now changed from available to bound.

5. Create a new pod named myapp with image nginx that will be used to Mount the Persistent Volume Claim with the path

/var/app/config.

Answer: 
A



Question 7
Question Type: MultipleChoice

SIMULATION

The following TLS certificates/key are supplied for connecting to the server with etcdctl:

* CA certificate: /opt/KUCM00302/ca.crt

* Client certificate: /opt/KUCM00302/etcd-client.crt

* Client key: Topt/KUCM00302/etcd-client.key

Options: 
A) solution





B) solution





Answer: 
B

Question 8
Question Type: MultipleChoice

List ''nginx-dev'' and ''nginx-prod'' pod and delete those pods

Options: 
A) kubect1 get pods -o wide

kubectl delete po ''nginx-dev''

kubectl delete po ''nginx-prod''

B) kubect1 get pods -o wide

kubectl delete po ''nginx- prod''

kubectl delete po ''nginx-prod''

Answer: 



A

Question 9
Question Type: MultipleChoice

SIMULATION

Check to see how many worker nodes are ready (not including nodes tainted NoSchedule) and write the number to

/opt/KUCC00104/kucc00104.txt.

Options: 
A) solution







B) solution





Answer: 
A



To Get Premium Files for CKA Visit
https://www.p2pexams.com/products/cka

For More Free Questions Visit
https://www.p2pexams.com/linux-foundation/pdf/cka

https://www.p2pexams.com/products/CKA
https://www.p2pexams.com/linux-foundation/pdf/cka

