

Free Questions for CIMAPR019-P01-1 by dumpshq

Shared by Mason on 15-04-2024
For More Free Questions and Preparation Resources
Check the Links on Last Page

Question 1

Question Type: MultipleChoice

RT produces two products from different quantities of the same resources using a just-in-time (JIT) production system. The selling price and resource requirements of each of the products are shown below:

Product	R	T
Unit selling price (\$)	130	160
Resources per unit: Direct labour (\$8 per hour)	3 hours	5 hours
Material A (\$3 per kg)	5 kgs	4 kgs
Material B (\$7 per litre)	2 litres	1 litre
Machine hours (\$10 per hour)	3 hours	4 hours

Market research shows that the maximum demand for products R and T during June 2010 is 500 units and 800 units respectively. This does not include an order that RT has agreed with a commercial customer for the supply of 250 units of R and 350 units of T at selling prices of $\$ 100$ and $\$ 135$ per unit respectively. Although the customer will accept part of the order, failure by RT to deliver the order in full by the end of June will cause RT to incur a $\$ 10,000$ financial penalty. At a recent meeting of the purchasing and production managers to discuss the production plans of RT for June, the following resource restrictions for June were identified: Direct labour hours 7,500 hours

Material A 8,500 kgs

Machine hours 7,500 hours
Assuming that RT completes the order with the commercial customer, prepare calculations to show, from a financial perspective, the optimum production plan for June 2010 and the contribution that would result from adopting this plan.

The contribution per unit for R and T will be...?

Options:

A- $\mathrm{R}=\$ 47$ per unit. $\mathrm{T}=\$ 61$ per unit
$B-R=\$ 51$ per unit. $T=\$ 61$ per unit
$\mathrm{C}-\mathrm{R}=\$ 47$ per unit. $\mathrm{T}=\$ 65$ per unit
D- $\mathrm{R}=\$ 45$ per unit. $\mathrm{T}=\$ 66$ per unit

Answer:

A

Explanation:

Question 2

Question Type: MultipleChoice

RT produces two products from different quantities of the same resources using a just-in-time (JIT) production system. The selling price and resource requirements of each of the products are shown below:

Product	R	T
Unit selling price (\$)	130	160
Resources per unit: Direct labour (\$8 per hour)	3 hours	5 hours
Material A (\$3 per kg)	5 kgs	4 kgs
Material B (\$7 per litre)	2 litres	1 litre
Machine hours (\$10 per hour)	3 hours	4 hours

Market research shows that the maximum demand for products R and T during June 2010 is 500 units and 800 units respectively. This does not include an order that RT has agreed with a commercial customer for the supply of 250 units of R and 350 units of T at selling prices of $\$ 100$ and $\$ 135$ per unit respectively. Although the customer will accept part of the order, failure by RT to deliver the order in full by the end of June will cause RT to incur a $\$ 10,000$ financial penalty. At a recent meeting of the purchasing and production managers to discuss the production plans of RT for June, the following resource restrictions for June were identified:

Direct labour hours 7,500 hours

Material A 8,500 kgs
Material B 3,000 litres

Machine hours 7,500 hours
Assuming that RT completes the order with the commercial customer, prepare calculations to show, from a financial perspective, the optimum production plan for June 2010 and the contribution that would result from adopting this plan.

The optimum production plan will be:

Options:

A- Contract: $\mathrm{R}=250, \mathrm{~T}=360$ and Market: $\mathrm{R}=500 \mathrm{~T}=710$
B- Contract: $R=250, T=360$ and Market: $R=600 T=710$
C- Contract: $R=250, T=360$ and Market: $R=650 T=710$
D- Contract: $R=250, T=360$ and Market: $R=500 T=700$
E- Contract: $R=250, T=360$ and Market: $R=660 T=720$

Answer:
D

Question 3

Question Type: MultipleChoice

A company is preparing its annual budget and is estimating the number of units of Product A that it will sell in each quarter of year 2. Past experience has shown that the trend for sales of the product is represented by the following relationship:
$y=a+b x$ where
$y=$ number of sales units in the quarter $a=10,000$ units $b=3,000$ units $x=$ the quarter number where $1=$ quarter 1 of year 1
Actual sales of Product A in Year 1 were affected by seasonal variations and were as follows:
Quarter 1:14,000 units Quarter2: 18,000 units Quarter 3: 18,000 units Quarter 4: 20,000 units
Calculate the expected sales of Product A (in units) for each quarter of year 2, after adjusting for seasonal variations using the additive model.

Options:
A- The expected sales for year 2 Quarter 4 was 32700 units
B- The expected sales for year 2 Quarter 4 was 32000 units
C- The expected sales for year 2 Quarter 4 was 33000 units
D- The expected sales for year 2 Quarter 4 was 40000 units

Answer:

B

Explanation:

References:

Question 4

Question Type: DragDrop

State whether the following costs are relevant or non-relevant in the context of short-term decision making scenarios.

Answer:
The decision to further process a product can
onlv be made if the ioint costs are accuratelv The decision to cease production of an individual product can anly be made if its share of ioint

include ioint costs for external renorting e to sAilloclation Defadtłr joint costs to products can be made on final sales value

A company is forecasting its revenue for May and has established that sales will be either high, medium or low. The expected value of sales revenue for May has been calculated as $\$ 160,000$. The following table includes data which relate to the potential sales in May.

High \$250,000 0.2 C
Medium A 0.5 D

Low \$100,000 B \$30,000
Place the figures given in to the spaces marked with the letters A, B, C and D, to complete the above table.

A company is choosing between three projects, Project P, Project Q and Project R using minimax regret as the criterion for the decision. The outcome from each project is dependent on future economic growth. If this is strong, returns will be $P \$ 5,000, Q \$ 6,500$ and R $\$ 7,200$. If it is weak, returns will be $P \$ 3,500, Q \$ 4,800$ and $R \$ 4,200$.

Place the correct figures into the table to show the maximum regret for each project.

Demand for two products, A and B is 1,000 units and 2,000 units respectively. Each unit of Product A requires 8 kg of material and each unit of Product B requires 5 kg of material. The maximum availability of material is $17,200 \mathrm{~kg}$. Contribution per unit of A is $\$ 10$ and per unit of B is $\$ 9$.

Place the production volumes of Product A and Product B, that will maximize contribution, in the table.

Units

0

1,000

Quesstion 9

A company sells three products A, B and C in a ratio of 2:2:3.
Each unit of A, B and C earns a contribution of $\$ 4.00, \$ 2.00$ and $\$ 4.00$ respectively. Production fixed costs are $\$ 69,000$ each month and selling fixed costs are \$13,000 each month.

The company holds no inventory. The management accountant wants to know the total number of units needed to break-even. However, he is unsure about how to calculate the weighted average contribution per unit or what category of fixed cost to use.

Place the amounts given to complete the table in order to calculate the total number of units to break even.

Weighted average contribution per Fixed costs
\square
,

To Get Premium Files for CIMAPRO19-P01-1 Visit

https://www.p2pexams.com/products/cimapro19-p01-1

For More Free Questions Visit

https://www.p2pexams.com/cima/pdf/cimapro19-p01-1

