Free Questionsfor MCIA-Level-1 by actualtestdumps
Shared by Bolton on 07-06-2022

For More Free Questions and Preparation Resources

Check the Links on Last Page

Question 1

Question Type: MultipleChoice

A popular retailer is designing a public API for its numerous business partners. Each business partner will invoke the API at the URL 58.
https://api.acme.com/partnefs/vl. The APl implementation is estimated to require deployment to 5 CloudHub workers.

The retailer has obtained a public X.509 certificate for the name apl.acme.com, signed by a reputable CA, to be used as the server
certificate.

Where and how should the X.509 certificate and Mule applications be used to configure load balancing among the 5 CloudHub workers,
and what DNS entries should be configured in order for the retailer to support its numerous business partners?

Options:

A) Add the X.509 certificate to the Mule application's deployable archive, then configure a CloudHub Dedicated Load Balancer (DLB) for
each of the Mule application's CloudHub workers
Create a CNAME for api.acme.com pointing to the DLB's A record

B) Add the X.509 certificate to the CloudHub Shared Load Balancer (SLB), not to the Mule application
Create a CNAME for api.acme.com pointing to the SLB's A record

C) Add the X.509 certificate to a CloudHub Dedicated Load Balancer (DLB), not to the Mule application
Create a CNAME for api.acme.com pointing to the DLB's A record

D) Add the x.509 certificate to the Mule application's deployable archive, then configure the CloudHub Shared Load Balancer (SLB)

for each of the Mule application's CloudHub workers
Create a CNAME for api.acme.com pointing to the SLB's A record

Answer:

C

Question 2

Question Type: MultipleChoice

Refer to the exhibit.

Client JZEE server Customer-hosied Mule runtime
Shopping cart WebSiore HTTP POST £>i HTTP POST - pi
checkout [T ™| backend >
Expearience AP Process AP
Per checkolf *~~4=--...___ T mmmmmamee
ITSTLANCE --h‘-:::::tilv;:::::'-_--

v comglationiD

77 swategy

A shopping cart checkout process consists of a web store backend sending a sequence of API invocations to an Experience API, which
in turn invokes a Process API. All APl invocations are over HTTPS POST. The Java web store backend executes in a Java EE

application server, while all APl implementations are Mule applications executing in a customer -hosted Mule runtime.

End-to-end correlation of all HTTP requests and responses belonging to each individual checkout Instance is required. This is to be
done through a common correlation 1D, so that all log entries written by the web store backend, Experience APl implementation, and
Process APl implementation include the same correlation ID for all requests and responses belonging to the same checkout instance.

What is the most efficient way (using the least amount of custom coding or configuration) for the web store backend and the
implementations of the Experience APl and Process API to participate in end-to-end correlation of the API invocations for each checkout
instance?

Options:

A) The web store backend, being a Java EE application, automatically makes use of the thread-local correlation ID generated by the
Java EE application server and automatically transmits that to the Experience API using HTTP-standard headers

No special code or configuration is included in the web store backend, Experience API, and Process API implementations to generate
and manage the correlation ID

Chel JZEE serece Custormer-nosicd Mule renbene
- : ~ e
Shopping can _ | wehsore HTTP POST - e HTTPPOST _ Y
chack caft "1 backend p——— - oy prpmr—— - o
it HTTP body | Experiense AN | o HTTP Body Process AP
Pew chsrkeonal = :
msEnce
corrcimioniD goncralcd kbodify 10 propogate custom comelabon! Ds
by hackend

B) The web store backend generates a new correlation ID value at the start of checkout and sets it on the X-CORRELATION-It HTTP

request header In each API invocation belonging to that checkout

No special code or configuration is included in the Experience APl and Process APl implementations to generate and manage the
correlation ID

Chenl JZEE servt Custorner-hosicd Mule renienc

Shupping can | wehSiore HI TP POST HTTP POST .._| K\(
Fracosi AR

chack ot Tl backend SywrsiAnanA [Py —
i HTTE b | Exprense AN KT
P skl ! i .. " body
FISEANCE
corelioniD generaled kodify 1o propogate custorm comelstonl Ds
by hackend

C) The Experience APl implementation generates a correlation 1D for each incoming HTTP request and passes it to the web store
backend in the HTTP response, which includes it in all subsequent API invocations to the Experience API.

The Experience APl implementation must be coded to also propagate the correlation ID to the Process API in a suitable HTTP request
header

Chenl JZEE sirvct Custorner-hosicd Mule renienc

Shopping cant | | | WehSiore HTTP POST (HTTP POST .._| /\(
: Esfurrense & Pracess AP

chack out 1 backend soereiabania [——]
fre HTTF body | i HTTF body

m

P chesoiomwal
FIsEnce

cormeimioniD goencraled kiodify 1o propogate custom comelaton Ds
by hackend

D) The web store backend sends a correlation ID value in the HTTP request body In the way required by the Experience API
The Experience APl and Process APl implementations must be coded to receive the custom correlation ID In the HTTP requests and
propagate It in suitable HTTP request headers

Chenl JZEE servt Custorner-hosicd Mule renienc

Stwpping can | | | wenszore HITPPOST | p‘ HTTP POST _[&/_>(

whacl oot | backund corTeiatanig i | cometstaonid
e BT . | Experenae A | i Pracois AP
P cfuisie il iri HTTT* body L : | in HTTF body —
msEnce
cormelioniD gencraled Hodify 10 propogate custorr co SoniDe
by hackend
Answer:
B

Question Type: MultipleChoice

A popular retailer is designing a public API for its numerous business partners. Each business partner will invoke the API at the URL 58.
https://api.acme.com/partnefs/vl. The APl implementation is estimated to require deployment to 5 CloudHub workers.

The retailer has obtained a public X.509 certificate for the name apl.acme.com, signed by a reputable CA, to be used as the server
certificate.

Where and how should the X.509 certificate and Mule applications be used to configure load balancing among the 5 CloudHub workers,
and what DNS entries should be configured in order for the retailer to support its numerous business partners?

Options:

A) Add the X.509 certificate to the Mule application's deployable archive, then configure a CloudHub Dedicated Load Balancer (DLB) for
each of the Mule application's CloudHub workers
Create a CNAME for api.acme.com pointing to the DLB's A record

B) Add the X.509 certificate to the CloudHub Shared Load Balancer (SLB), not to the Mule application
Create a CNAME for api.acme.com pointing to the SLB's A record

C) Add the X.509 certificate to a CloudHub Dedicated Load Balancer (DLB), not to the Mule application
Create a CNAME for api.acme.com pointing to the DLB's A record

D) Add the x.509 certificate to the Mule application's deployable archive, then configure the CloudHub Shared Load Balancer (SLB)
for each of the Mule application's CloudHub workers
Create a CNAME for api.acme.com pointing to the SLB's A record

Answer:

C

Question 4

Question Type: MultipleChoice

Refer to the exhibit.

Clienl JZEE server Customer-hosied Mule runtime

Shopping carl WebSiore HTTP POST _ Qi HTTP POST - Q

check oax ™ hackend

L

Exparience AP Process AP

Per checkolf ==~

LA T e

...............

A shopping cart checkout process consists of a web store backend sending a sequence of API invocations to an Experience API, which
in turn invokes a Process API. All API invocations are over HTTPS POST. The Java web store backend executes in a Java EE
application server, while all APl implementations are Mule applications executing in a customer -hosted Mule runtime.

End-to-end correlation of all HTTP requests and responses belonging to each individual checkout Instance is required. This is to be
done through a common correlation 1D, so that all log entries written by the web store backend, Experience APl implementation, and
Process APl implementation include the same correlation ID for all requests and responses belonging to the same checkout instance.

What is the most efficient way (using the least amount of custom coding or configuration) for the web store backend and the

implementations of the Experience APl and Process API to participate in end-to-end correlation of the API invocations for each checkout
instance?

Options:

A) The web store backend, being a Java EE application, automatically makes use of the thread-local correlation ID generated by the
Java EE application server and automatically transmits that to the Experience API using HTTP-standard headers

No special code or configuration is included in the web store backend, Experience API, and Process APl implementations to generate
and manage the correlation ID

Cheznil JZEE st Custorner-hosicd Mule renienc

-
chack ouft 1 backend SrsiananA [[—
| Experende &AM | in h‘T.'l"b-r_-:!y

Pradedd

it HTTP body

Shupping can WehS:nre HTTP POST ¢ HTTP POST .._| 4
Al

Py chesciomal
SISGENCe

corrcimioniD goncralcd kbodify 10 propogate custom comelabon! Ds
by hackend

B) The web store backend generates a new correlation ID value at the start of checkout and sets it on the X-CORRELATION-It HTTP
request header In each API invocation belonging to that checkout

No special code or configuration is included in the Experience APl and Process APl implementations to generate and manage the
correlation ID

Chenl JZEE serece Custorner-hosicd Mude reniEnd

Shupping can | webSore HI TP POST HTTP POST .._| /\(
2 - | &-\.)
Pracoas AP

chack nut 7] backund T l P ——
L LT . | Experence A y
v——— it M Tu""b.:ufy - .] hTTl"b\'_ﬂy'
FISENCe
coreiioniD generaled kodify 1o propogate custorm comelstonl Ds

try hackend

C) The Experience APl implementation generates a correlation ID for each incoming HTTP request and passes it to the web store
backend in the HTTP response, which includes it in all subsequent API invocations to the Experience API.

The Experience APl implementation must be coded to also propagate the correlation ID to the Process API in a suitable HTTP request
header

Chesd J2EE Seovcy Cussorner-hosicd Mule renlend
51g_|w|||u carl o WhehSinre HTTP POST __ p(HTTP FOST n-_| /\(
chack cat "1 backend Y - I corraiatanid . &")
i HTTE e | Experense &M HTTP Pracead AP
Py cfweriomal . oy - | MF’
SrsEnCe
corrcimioniD goncralcd kbodify 10 propogate custom comelabon! Ds

by hackend

D) The web store backend sends a correlation ID value in the HTTP request body In the way required by the Experience API
The Experience APl and Process API implementations must be coded to receive the custom correlation ID In the HTTP requests and
propagate It in suitable HTTP request headers

Chenl JZEE sirvct Custorner-hosicd Mule renienc

Shupping carl | wehsSone HTTP POST __ é_'>(HTTFROST __| &/})(
| Experence & | Process AP

chack ouft 1 backend soeraiataniad

conralafacry
o T . m 4
——— irr HTTP body i HTTF body
SrsEnce
cormeimioniD goencraled kiodify 1o propogate custom comelaton Ds

by hackend

Answer:

To Get Premium Files for MCIA-Level-1 Visit

https.//www.p2pexams.com/pr oducts/mcia-level-1 2 0 n ‘

For More Free Questions Visit
https.//www.p2pexams.com/mulesoft/pdf/mcia-level-1 nlsco"“"l

https://www.p2pexams.com/products/MCIA-Level-1
https://www.p2pexams.com/mulesoft/pdf/mcia-level-1

