

Free Questions for 8002 by certsinside

Shared by Sandoval on 15-04-2024

For More Free Questions and Preparation Resources

Check the Links on Last Page

Question 1

Question Type: MultipleChoice

I have a portfolio of two stocks. The weights are 60% and 40% respectively, the volatilities are both 20%, while the correlation of returns is 50%. The volatility of my portfolio is

Options:

A- 16%

B- 17.4%

C- 20%

D- 24.4%

Answer:

В

Question 2

Question Type: MultipleChoice

The correlation between two asset returns is 1. What is the smallest eigenvalue of their correlation matrix?

Answer: C Question 4 uestion Type: MultipleChoice Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	Options:
C- 1.5 D- None of the above Answer: C Question 4 uestion Type: MultipleChoice Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	A- 0.5
Answer: C Question 4 uestion Type: MultipleChoice Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	B- 1
Answer: C Question 4 uestion Type: MultipleChoice Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	C- 1.5
Question 4 uestion Type: MultipleChoice Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	D- None of the above
Question 4 uestion Type: MultipleChoice Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	
Question 4 uestion Type: MultipleChoice Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	Answer:
Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	С
Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	
Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	
Stress testing portfolios requires changing the asset volatilities and correlations to extreme values. Which of the following would lead to a non positive definite covariance matrix?	Question 4
non positive definite covariance matrix?	uestion Type: MultipleChoice
non positive definite covariance matrix?	
Options:	non positive definite covariance matrix?
Options:	
Options:	
•	Options:

- B- Changing all the correlations to be unity
- **C-** Changing all the correlations to be zero
- D- All of the above

Answer:

В

Question 5

Question Type: MultipleChoice

Which of the following statements is true for symmetric positive definite matrices?

Options:

- A- Its eigenvalues are all positive
- B- One of its eigenvalues equals 0
- C- If a is its eigenvalue, then -a is also its eigenvalue
- D- If a is its eigenvalue, then is also its eigenvalue

Answer:	
A	
Question 6	
Question Type: MultipleChoice	
Two vectors are orthogonal when:	
Options:	
A- one is a scalar multiple of the other B- their components are linearly dependent	
C- their determinant is zero	
D- their scalar product (sum product) is zero	
Answer:	

D

Question 7

Question Type: MultipleChoice

Let A be a square matrix and denote its determinant by x. Then the determinant of A transposed is:

Options:

A- x -1

B- x

C- ln(x)

D- -x

Answer:

В

Question 8

Question Type: MultipleChoice

Question 9

D

Question Type: MultipleChoice

Calculate the determinant of the following matrix:

What is the angle between the following two three dimensional vectors: a=(1,2,3), b=(-4,2,0)?

Options:	
A- 90 degrees	
B- 180 degrees	
C- 57 degrees	
D- 45 degrees	
Answer:	
A	
Question 10	
Question Type: MultipleChoice	
The determinant of a matrix X is equal 2. Which of the following statements is true?	
Options:	

A- det(2X) =

- $\mathbf{B-} \det(2X) = 2 \det(X)$
- $\mathbf{C-} \det(2X) = \det(X)2$
- $\mathbf{D-} \det(2X) = 4 \det(X)$

Answer:

D

To Get Premium Files for 8002 Visit

https://www.p2pexams.com/products/8002

For More Free Questions Visit

https://www.p2pexams.com/prmia/pdf/8002

